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Twisted localized modes
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In a number of recent papers the so-called twisted localized mode of the discrete nonlineaingenro
equation has been proposed. Herein, we study the existence and stability properties of such modes. We analyze
the persistence of quasiperiodic modes and study the domains of existence and numerical stability of the exact
form of such solutions. We identify the bifurcations through which they lose their stability and follow the
behavior of the intrinsic localized modes and their eigenmodes even in the unstable regime.
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[. INTRODUCTION whereu,(t) is the complex field under study, the subscript
indexes the lattice sites, the overdot denotes temporal partial
In the past two decades a significant amount of researcterivative, C is the lattice coupling constant, and, finally,
has been dedicated to the study of energy localization i ,u,=u,,;+U,_;—2u, is the discrete Laplaciar6]. We
nonlinear latticed1]. In particular the subject ointrinsic  will be interested in ILM’s of the formu,(t) =exp(t) ¥, [17]
localized mode¢lLM’s ) has drawn considerable attention asthat reduce the dynamical problem to a static one due to the
it offers appealing insight into a variety of problems rangingmonochromatic gauge symmetry of the equation. The two
from the nonexponential energy relaxation in so[i@kto the  most studied modes of the DNLS equation éethe stable
local denaturation of the DNA double strarj@]. Also,  gjevers-Takeno modéST) [18]—a site-centered mode, and
within mate_rials sciencit] and nonlinear optics applications (2) the unstable PageP) [19] mode centered between sites.
[5] the subject has drawn a new focus. However, recently DKL[15] proposed a different mode,

Recently, a lot of theoretical woffl6—8] has been devoted . .
to the study and understanding of the dynamic and thermoV-VhICh they called thewisted unstaggerethode of the form

dynamic properties of the nonlinear modes that arise in theslt!ﬁ(t). = exp()(. ’a’l_’_ l-e...) (@s _normal_lzed by its
discrete systems. One of the most interesting results of thigraximum amplltudga>0). The analysis of this mode and
intense study is the striking difference between the discretS Staggered versioru,(t) =exp(t)(...,~a1,1-q,...)
solitary-wave modes and their continuum counterparts. Iiffé exactly symmetrical, so we will consider only the former.
particular, many of the characteristic phenomena related to This mode arises naturally from the anticontinuum limit
these waves, such as the modulational instability of planéC=0) [20]. Apart from the explicit construction of such
waves[6] or the formation and stability of solitori8], occur ~ twisted modes a main issue that will be of concern to this
in discrete systems very differently from their continuum study will be their stability. Interestingly enough, earlier ref-
counterparts. Furthermore, discreteness provides abundagitences on the subject left this question without a definitive
possibilities for more complex modes than expected in thenswer. In particular, it was arguéolut not provegl[13] that
continuum limit. all twisted modes should be unstable. On the contrary, in

Keeping in mind that in the discrete problem there is a[14] a perturbative result was used to argue the stability of
multitude of additional modes that most likely serve assuch modes for smalC and numerical verification was
asymptotic states for the system dynanjit8], we will ana-  claimed but not demonstratéRef. [25] of [14]). We intend
lyze the existence, dynamics, and stability of a mode recentlyo resolve this issue in a decisive way demonstrating the
proposed by a number of researchers. This odd, symmetriegimes of stability and instability of these modes as well as
mode was first studied for small systems[itl,12. For indicating the mechanisms through which instability will
infinite-dimensional systems, it was first mentioned as a subarise. In order to perform linear stability analysis around fit,
case of the ILM’s studied il 3] and briefly also in14]. The we use the rotating wave franfRWF)
first focused attempt to study such ILM’s was however, by
Darmanyan, Kobyakov, and Leder@KL) [15]. Herein, we Up(t)=exp(it)[ ¢ tuv,(1)] 2
will expand on the results of DKL and attempt to display
some of the very interesting features that these modes posfong with the ansatz,=a,exp(—iwt)+b.expfwt). This
sess. As a simple benchmark system for this study, we willeads to the linear stability equations
use the ubiquitous discrete nonlinear Schinger (DNLS)
equation that has appeared in a variety of contexts in the wa,=—CAya,—2|¢n|%a,—a,— b}, (3
study of discrete nonlinear lattic€s,5,7,11.

— 2 2%
IIl. TWISTED MODE @By =~ CAbn= 2|4 =bn Y2y @

The DNLS equation has the form We first solve the static equation

iun:_CAZUn—|Un|2Un, (D) _¢n:_CA2¢n_|¢n|2¢n 5
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1/C FIG. 2. An example of a BOB mode f@=0.02. The modulus

of a solution exgif) 4, would obviously be static in time. However,
FIG. 1. The frequency of th& mode (scaled byC) eigenfre-  the genuinely periodic nondecaying oscillation indicates the exis-
quency and its harmoni¢second, third, and fouritshown as solid  tence of a secondai§frequency. This frequency is associated with
lines as a function of théscaled fundamental frequency. The pho- 5 spatial projection along trfeigenfunction that creates a spatially
non band edge @ and 4+1/C are shown for comparison in |ocalized, time periodic structur@ breatheron the “background”

dashed-dotted lines. In the intervals for which the harmonics are ||&)f another such structure, hencémndecaying due to the absence
the phonon band, the nonlinear resonances described in the text aseresonancasBOB.

present.

_ _ ) ) ) .. frame, whereas they are quasiperiodic two-frequency modes
using Newton-Raphson iteration with an appropriate initidlfor the original dynamical problem. In order to rigorously
condition to obtain the exact twisted mode. We then use Eqyrove the existence of such modes, one can directly adjust
(3) and the complex conjugate of E@) to solve the ensuing (i the rotating wave frame where the problem is sjatie
matrix eigenvalue problem fore,{a,,by}). arguments of Sec. 5.1 §22]. This demonstrates that the

We thus find that foiC [0,0.146 the ILM’s spectrum  only condition for the rigorous proof of existence of BOB's
consists of two eigenmodes at=0. An additional even- s the nonresonance condition for their internal mode fre-
parity shape eigenmodgof nonzero frequency exists in the quencies in the RWF, which is satisfied between the above
gap betweem =0 andw=1. The latter represents the lower mentioned intervals. Such modes are seen to persist in the
edge of the phonon band since the spatially extended wavefnamics of numerical experiments as can be seen in Fig. 2
of this band obey the dispersion relatian=*=[1+C(2  for C=0.02. Our long-time simulations have indicated that
—2 cosk)]. Following previous expositions on the subject BOB’s generically persistas is also suggested by FigaB
[21], we scale the fundamental frequency=1, and the of [15]] in the long-time dynamics of the system. This con-
eigenmode frequencies by the coupling constar@. In Fig.  clusion is in full agreement with what one would expect
1 we show the shape mode frequency variation with respedtom the findings of Sec. 6 ¢22], where breathers on kinks
to the phonon bandindicated by dash-dot lingsWe also  (BOK'’s) were studied. These numerical results suggest that
show the variation of th& mode harmonics for the interval these coherent structuré8OK’s and BOB'’S are stable for,
of stability of the exact twisted mode. at least, intermediate time scales and in any event, certainly

As was found for the DNLS equation in R¢R1] and for  for time scales relevant for realistic experimental realizations
the equivalent static problem of the discrete sine-Gordomf the systems under study. A rigorous proof of stability of
(SG) and ¢* equations in Ref[22], the existence of @th  such structures would involve the Floquet theory; that is a
harmonic of a discrete eigenmode inside the phonon banguite interesting but rather technical endeavor beyond the
leads to at~Y(?P~2) rate of decay of the localized energy scope of the present worlone of which wakto rigorously
into extended wave ripples. For the twisted mode, the fourtiprove the existence and numerically demonstrate the stability
harmonic ofSis in the band foIC €[0.0147,0.016F signal-  (at least for relevant time scales and for the appropriate val-
ing at~ Y6 decay. Similarly forC [0.0252,0.031Bthe third  ues of the coupling constant, see Sec. dfi these ILM's. It
harmonic generates at Y* decay and for C is worth noting that these modes can be genuinely quasiperi-
€[0.0518,0.083#% the second harmonic inducesta> de-  odic, persisting in the long-time asymptotics of the system
cay. Perhaps more interestingly, for intervals between thevhile the regular DNLS mode&such as STcan sustain only
mentioned ones, no harmonics are resonating with the exnetastable BOB's as explained|[i23]. It is therefore likely
tended modes. This signifies that an original perturbation ofhat the twisted modes and their persistent internal oscilla-
the exact ILM in theS eigendirection, rather than decaying, tions often appear spontaneously in dynamical simulations
will sustain a persistent oscillatiofnamed breather on [10] and experiments.
breather (BOB) in Ref. [23]]. These modes are genuinely  Useful insight into the nature of the twisted mode can be
single-frequency time-periodic modes in the rotating waveobtained by considering the twout of phasg components
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FIG. 3. Sketch of effectlvg potential between two oppositely FIG. 4. The spectrum around the exact twisted mode at the onset
phased components of the twisted mode. of the first instability C=0.146 04. Shown is the spectral plane
(w, ,w;). The quartet bifurcation is clearly visible. There are two
separately. In this case, analogously to what was discussed ifore modes at»=0 and a phonon band with e =[1,1+4C]
[24], it is, in principle, possible to construct a potential de-
termining the center of mass motion of a single componentgomplexity of a noncontinuum mode gives rise to the much
Generally, there will be two separate contributions to thismore complex behavior of quartet generation in order to pro-
potential arising from(1) the (repulsive interaction of the duce the instability. Furthermore, as was pointed out in Ref.
two components an() from the translational barrier created [21], the regular modes when approaching the phonon band
by the discretened®ften referred to as the Peierls-Nabarro eventually merge with it without causing an instability,
periodic potentialPNP]. A sketch of the overall potential is  whereas clearly this is not the case here. It is also interesting
given in Fig. 3 (compare with Fig. 2 of Ref[24]). It is  to note that, given the structure of the discrete eigenvalue
evident that the twisted mode exists due to the PNP as this isroblem w?v,=[H]v; (Where[H] is a Hermitian matrix
the source of the local minima observed in Fig. 3. Approachwhen linearizing around static nonuniform steady states in
ing the continuum limit, the PNP will vanish while the re- the discrete SG and,A mode|s’ a quartet bifurcation is im-
pulsive interaction persists and therefore the twisted mod@ossible due to discreteness. Hence, this is a phenomenon
will not survive in the continuum limit as the two compo- particular to the DNLS equation. This is a feature observed
nents will be free to separate. The oscillation of the internafor bright modes of the DNLS equation. Prior to this work,
mode of the twisted ILM can be viewed as a small amplitudesych an oscillatory instability, reminiscent of a Hopf bifur-
oscillation of a point particle in one of the local minima of cation (common to parabolic dissipative systenigd been
the potential in Fig. 3. Therefore the frequency of the inter-gpserved for bright modes in the Bragg-gap solitons of the
nal mode, as shown in Fig. 1, is a measure of the curvaturgeneralized Thirring model25]. In the DNLS equation, it
of the potential at this local minimum. It is important to note ywas very recenﬂy observddﬁ] that dark Staggered modes
that although this “center of mass” picture offers insight of the discrete problem become unstable via such an insta-
into the existence properties of the twisted ILM and its in-pjlity with increase of the coupling strength.
ternal mode, it cannot fully account for the quantitative de-  After splitting, the quartet of modes moves symmetrically
tails of the Stabl“ty properties of the infinite-dimensional dy- in the Comp|ex p|ane up to a maximum bifurcation and there-
namical system. Hence, we use numerical linear stabilityfter moves towards the real axis. This scenario is very simi-
analysis to probe such details more carefully. lar to the one described in RdR6].

Due to the sparse population of the phonon band for any
finite system(the trajectory of the imaginary part of which is
shown in Fig. 5 for a system witN=100 site$, the eigen-

As the first harmonic f=1) of the S mode approaches value may return to a gap in the spectrum. In that case, it
the band and eventually hits it @~0.146 04, an instability reenters the axi§in the case ofN=100 this happens fo€
emerges from a bifurcation of a quartet of modes that now=0.769); however, a€ is increased, it encounters the clos-
have a nonzero imaginary frequency componentThe po-  est eigenvalue of the band and collides with it. The collision
sitions of the eigenvalues in the spectral plane very close teesults in the reexiting of the eigenvalue from the real axis
the onset of this instability are shown in Fig. 4. This behavior(the “reentrant instabilities” of Ref[26]) and a cascade of
is rather unusual for the regular ST amdmodes whose such phenomena resulti® analogy to Fig. 2 of Ref[{26)).
bifurcations to instability occur primarily through the origin Calculations with larger lattices have verified a picture simi-
onto the imaginary axis of the spectral plane. Herein, thdar to Fig. 2 of[26] for the twisted modes. In the case of the

lll. BIFURCATION SCENARIO
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FIG. 5. The dashed line shows the behavior of tabsolute
value of the imaginary part of the quartet eigenvalue as a function ~ FIG. 6. The additional two eigenmodes that are bifurcating from

of (the absolute value pits real part(i.e., showing its trajectory in  the phonon bandshown by dash-dot lingsalong the real line are
the spectral planeThe excursion along the spectral plane entails ashown. The first eigenmodesolid line) bifurcates along the real

maximum bifurcation and an eventual return to the real axisCfor line for C~0.410 and hits the origin to enter along the imaginary
~0.769. The solid line indicates th@varian) position w, =1 of axis (the stars indicate the magnitude of this, now imaginary, eigen-

the edge of the phonon band. Note that the solid line is meant onlyalug for C>0.714. The second eigenmootted ling bifurcates
as a guide to the eye as to where the phonon band edgédieshe  for C>0.6 and arrives at the origin f@€~0.77.
phonon band edge mode always has-0).
o ) ) two limits as the homotopic parameteiis varied; a convex
infinite system (for which the phonon band contains no compination of the DNLS and AL-NLS nonlinearities is as
gaps, the approach of the quartet eigenfrequency to the reg|ows:
axis is only asymptotic.

However, in the interval between the bifurcation from and
the return to the real axis of the quartet modes, there are ;- _ _ 1y 12 _
further interesting phenomena. In particular, ®r0.41, a == CAgy=[up[2(1 = €)unt€(Un 1+ Un ). 7)
mode that was sitting at the edge of the phonon band now
bifurcates along the real axis to become a localized eigen-
mode. This mode moves all the way to the origin of theClearly, thee=0 limit (from which we start the continua-
spectral plane to bifurcate along the imaginary axis of thejon) coincides with the DNLS equation, while tle=1 limit
plane giving rise to an additional unstable eigenmode. Thegincides with AL-NLS equation. In addition to studying the
bifurcation occurs atC~0.714. Moreover, another eigen- twisted mode standing waves, we set up the analogs of Egs.
mode emerges from the phonon band, @ 0.6 and moves  (3) and (4) to study stability.
towards the origin reaching it fa~0.77. (The behavior of The homotopic continuation was performed for a typical
these two modes that are bifurcating from the band edge igalue of the coupling constan€E0.1) for which the mode
shown in Fig. 6. For higher values of the coupling constant, js stable in the DNLS equatiofby using different values of
the twisted modes are highly unstable and hence of no pae, the generic nature of the scenario presented below was
ticular interest. verified). It is observed that the mode continues to be stable
until e~0.085. The scenario up to this point is strongly

IV. DISCRETE INTEGRABLE LIMIT reminiscent of the one encountered approaching the con-
tinuum limit. In particular the internal-mode frequency ap-

In the previous section we saw how the approach to th¢yroaches the edge of the phonon band and eventually col-
continuum limit of this discrete ILM occurs. Another inter- |iges with it, generating a quartet of eigenvalues. The quartet
esting aspect worth exploring is the approach todiserete  of modes then moves symmetrically in the complex plane
integrable limit as represented by the Ablowitz-Ladik yntj| e~0.235 where it eventually returns to the real line
(AL)NLS equation27] beyondthe phonon band. Note that this is the most important
difference between the continuum limit and the integrable
limit approach. For the case of the continuum, as the value of
the lattice spacing is decreased, the width of the phonon band

In order to study how the twisted mode and its stabilitygradually increases and eventually becomes semi-infinite ex-
change on approaching the discrete integrable limit, we useténding from a minimum frequencyw(=A=1) to w=o.
homotopic continuation, studying an interpolant between thén the contrary, this is not true for the discrete integrable

iUn=—CAyUp—|Un2(Ups1+Un_y). (6)
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1 T T T T T T T V. SUMMARY
0.8f ] Summarizing, we have seen that the twisted modes pro-
0.6k i posed in[15] in media with cubic nonlinearity have very
interesting properties.
04r 1 (i) Contrary to the regulafST and P) modes of the
0a | DNLS equation, they can sustain exact breather on breather
_ solutions, which are genuinely quasiperiodic solutions of Eq.
8 o o° mo o omm ° ] (1). These modes are naturally conforming to the symmetries
—0.2k _ of the problem and, as suggested by Fi@) ®f [15] as well
as by our numerical results, are natural candidates for the
=0 i long-time asymptotic states of the system. They are also
—06} . rather different from the single-humped, integrability-related
(constructed via the Hirota methpdnd rather unstablé&o
~4.8r i phase perturbationsquasiperiodic modes of the ALNLS
= - s s - s s s equation constructed if28].

= -8 -4 -2 (i) Contrary to the regular modes of the DNLS equation

and the discrete SG anf* kinks [22,29,3(, the “collision”
FIG. 7. The eigenvalues at the spectral plaig ;) are shown of discrete eigenmodes with the phonon band does not occur
for the case approaching the integrable limit & 0.6, just priorto 1N & smooth way, but rather entails a quartet bifurcation for a

the termination of the branch. One can clearly discern the modes 4tNit€ value of the coupling constant. o
0 (of multiplicity 2), the phonon banédense group of circlésthe (iii) Additional modes leave the phonon band to give rise
two pairs of modes that have bifurcated off the lower edge of thd© localized eigenmodes and to eventually produce instabili-
band, as well as the mode with=6.367, which is the mode that ties through the origin, the last of which will eventually de-
has returned to the real line beyond the upper edge of the phond#roy the mode for large values of the coupling constant.
band. (iv) The approach of the modes to the discrete integrable
limit is in many respects reminiscent of that to the continuum
limit. However, the differences between the bandwidths of
the phonon band in the two cases account for some different
phenomena and the stability of the mode even relatively
close to the integrable limit.

The fact that these twisted modes have a number of inter-
esting and significantly different properties than regular
lower edge of the phonon band, followed @t0.465 by & | 5 modes warrants further efforts to better understand

se_C(_)nd pair. The eventual coII|5|0n_of one of these W'th_thetheir significance and influence in relevant experimental situ-
origin of the spectral plane results in the saddle-node bifur,..

/ - oF . ) ) ations.
cation terminating this branch of twisted mode solutions at
e.,~0.61. The spectral plane of the stability analysis around
the (still stable mode ate=0.6 is given in Fig. 7.

From the above, we conclude that the approach to the P.G.K. gratefully acknowledges support from the “Alex-
discrete integrable limit is in certain ways reminiscent of theander S. Onassis” Public Benefit Foundation and the hospi-
approach to the continuum limit; however, the specifics oftality of the Center for Nonlinear Studies of the Los Alamos
the lattice system account for(aignifican} difference that National Laboratory. Research at the Los Alamos National
permits the mode to exist and be stable even at relativelyaboratory was performed under the auspices of the U.S.
high values of the relevant homotopic parameter. DOE.
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limit where the width of the phonon band remains constant
allowing the stability of the twisted mode to be reestablished
This was also verified numerically by full-scale integration
of the ILM initial condition for €>0.235. Ase is further

increased, at~0.395 a pair of modes bifurcates off of the
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