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Twisted localized modes
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In a number of recent papers the so-called twisted localized mode of the discrete nonlinear Schro¨dinger
equation has been proposed. Herein, we study the existence and stability properties of such modes. We analyze
the persistence of quasiperiodic modes and study the domains of existence and numerical stability of the exact
form of such solutions. We identify the bifurcations through which they lose their stability and follow the
behavior of the intrinsic localized modes and their eigenmodes even in the unstable regime.
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I. INTRODUCTION

In the past two decades a significant amount of resea
has been dedicated to the study of energy localization
nonlinear lattices@1#. In particular the subject ofintrinsic
localized modes~ILM’s ! has drawn considerable attention
it offers appealing insight into a variety of problems rangi
from the nonexponential energy relaxation in solids@2# to the
local denaturation of the DNA double strand@3#. Also,
within materials science@4# and nonlinear optics application
@5# the subject has drawn a new focus.

Recently, a lot of theoretical work@6–8# has been devoted
to the study and understanding of the dynamic and ther
dynamic properties of the nonlinear modes that arise in th
discrete systems. One of the most interesting results of
intense study is the striking difference between the disc
solitary-wave modes and their continuum counterparts.
particular, many of the characteristic phenomena relate
these waves, such as the modulational instability of pl
waves@6# or the formation and stability of solitons@9#, occur
in discrete systems very differently from their continuu
counterparts. Furthermore, discreteness provides abun
possibilities for more complex modes than expected in
continuum limit.

Keeping in mind that in the discrete problem there is
multitude of additional modes that most likely serve
asymptotic states for the system dynamics@10#, we will ana-
lyze the existence, dynamics, and stability of a mode rece
proposed by a number of researchers. This odd, symm
mode was first studied for small systems in@11,12#. For
infinite-dimensional systems, it was first mentioned as a s
case of the ILM’s studied in@13# and briefly also in@14#. The
first focused attempt to study such ILM’s was however,
Darmanyan, Kobyakov, and Lederer~DKL ! @15#. Herein, we
will expand on the results of DKL and attempt to displ
some of the very interesting features that these modes
sess. As a simple benchmark system for this study, we
use the ubiquitous discrete nonlinear Schro¨dinger ~DNLS!
equation that has appeared in a variety of contexts in
study of discrete nonlinear lattices@3,5,7,11#.

II. TWISTED MODE

The DNLS equation has the form

i u̇n52CD2un2uunu2un , ~1!
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whereun(t) is the complex field under study, the subscripn
indexes the lattice sites, the overdot denotes temporal pa
derivative, C is the lattice coupling constant, and, finall
D2un5un111un2122un is the discrete Laplacian@16#. We
will be interested in ILM’s of the formun(t)5exp(it)cn @17#
that reduce the dynamical problem to a static one due to
monochromatic gauge symmetry of the equation. The t
most studied modes of the DNLS equation are~1! the stable
Sievers-Takeno mode~ST! @18#—a site-centered mode, an
~2! the unstable Page (P) @19# mode centered between site

However, recently DKL@15# proposed a different mode
which they called thetwisted unstaggeredmode of the form
un(t)5exp(it)( . . . ,a,1,21,2a, . . . ) ~as normalized by its
maximum amplitude;a.0). The analysis of this mode an
its staggered versionun(t)5exp(it)( . . . ,2a,1,1,2a, . . . )
are exactly symmetrical, so we will consider only the form

This mode arises naturally from the anticontinuum lim
(C50) @20#. Apart from the explicit construction of suc
twisted modes a main issue that will be of concern to t
study will be their stability. Interestingly enough, earlier re
erences on the subject left this question without a definit
answer. In particular, it was argued~but not proved! @13# that
all twisted modes should be unstable. On the contrary
@14# a perturbative result was used to argue the stability
such modes for smallC and numerical verification was
claimed but not demonstrated~Ref. @25# of @14#!. We intend
to resolve this issue in a decisive way demonstrating
regimes of stability and instability of these modes as well
indicating the mechanisms through which instability w
arise. In order to perform linear stability analysis around
we use the rotating wave frame~RWF!

un~ t !5exp~ i t !@cn1vn~ t !# ~2!

along with the ansatzvn5anexp(2ivt)1bnexp(ivt). This
leads to the linear stability equations

van52CD2an22ucnu2an2an2cn
2bn

! , ~3!

2vbn52CD2bn22ucnu2bn2bn2cn
2an

! . ~4!

We first solve the static equation

2cn52CD2cn2ucnu2cn ~5!
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using Newton-Raphson iteration with an appropriate ini
condition to obtain the exact twisted mode. We then use
~3! and the complex conjugate of Eq.~4! to solve the ensuing
matrix eigenvalue problem for (v,$an ,bn

!%).
We thus find that forCP@0,0.146# the ILM’s spectrum

consists of two eigenmodes atv50. An additional even-
parity shape eigenmodeS of nonzero frequency exists in th
gap betweenv50 andv51. The latter represents the lowe
edge of the phonon band since the spatially extended w
of this band obey the dispersion relationv56@11C(2
22 cosk)#. Following previous expositions on the subje
@21#, we scale the fundamental frequency,L51, and the
eigenmode frequenciesv by the coupling constantC. In Fig.
1 we show the shape mode frequency variation with resp
to the phonon band~indicated by dash-dot lines!. We also
show the variation of theS mode harmonics for the interva
of stability of the exact twisted mode.

As was found for the DNLS equation in Ref.@21# and for
the equivalent static problem of the discrete sine-Gord
~SG! and f4 equations in Ref.@22#, the existence of apth
harmonic of a discrete eigenmode inside the phonon b
leads to at21/(2p22) rate of decay of the localized energ
into extended wave ripples. For the twisted mode, the fou
harmonic ofS is in the band forCP@0.0147,0.0167# signal-
ing a t21/6 decay. Similarly forCP@0.0252,0.0313# the third
harmonic generates a t21/4 decay and for C
P@0.0518,0.0834# the second harmonic induces at21/2 de-
cay. Perhaps more interestingly, for intervals between
mentioned ones, no harmonics are resonating with the
tended modes. This signifies that an original perturbation
the exact ILM in theS eigendirection, rather than decayin
will sustain a persistent oscillation@named breather on
breather ~BOB! in Ref. @23##. These modes are genuine
single-frequency time-periodic modes in the rotating wa

FIG. 1. The frequency of theS mode ~scaled byC) eigenfre-
quency and its harmonics~second, third, and fourth! shown as solid
lines as a function of the~scaled! fundamental frequency. The pho
non band edge 1/C and 411/C are shown for comparison in
dashed-dotted lines. In the intervals for which the harmonics ar
the phonon band, the nonlinear resonances described in the te
present.
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frame, whereas they are quasiperiodic two-frequency mo
for the original dynamical problem. In order to rigorous
prove the existence of such modes, one can directly ad
~in the rotating wave frame where the problem is static! the
arguments of Sec. 5.1 of@22#. This demonstrates that th
only condition for the rigorous proof of existence of BOB
is the nonresonance condition for their internal mode f
quencies in the RWF, which is satisfied between the ab
mentioned intervals. Such modes are seen to persist in
dynamics of numerical experiments as can be seen in Fi
for C50.02. Our long-time simulations have indicated th
BOB’s generically persist@as is also suggested by Fig. 3~a!
of @15## in the long-time dynamics of the system. This co
clusion is in full agreement with what one would expe
from the findings of Sec. 6 of@22#, where breathers on kink
~BOK’s! were studied. These numerical results suggest
these coherent structures~BOK’s and BOB’s! are stable for,
at least, intermediate time scales and in any event, certa
for time scales relevant for realistic experimental realizatio
of the systems under study. A rigorous proof of stability
such structures would involve the Floquet theory; that is
quite interesting but rather technical endeavor beyond
scope of the present work~one of which was! to rigorously
prove the existence and numerically demonstrate the stab
~at least for relevant time scales and for the appropriate
ues of the coupling constant, see Sec. III! of these ILM’s. It
is worth noting that these modes can be genuinely quasip
odic, persisting in the long-time asymptotics of the syst
while the regular DNLS modes~such as ST! can sustain only
metastable BOB’s as explained in@23#. It is therefore likely
that the twisted modes and their persistent internal osc
tions often appear spontaneously in dynamical simulati
@10# and experiments.

Useful insight into the nature of the twisted mode can
obtained by considering the two~out of phase! components

in
are

FIG. 2. An example of a BOB mode forC50.02. The modulus
of a solution exp(it)cn would obviously be static in time. However
the genuinely periodic nondecaying oscillation indicates the e
tence of a secondaryS frequency. This frequency is associated wi
a spatial projection along theSeigenfunction that creates a spatial
localized, time periodic structure~a breather! on the ‘‘background’’
of another such structure, hence a~nondecaying due to the absenc
of resonances! BOB.
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separately. In this case, analogously to what was discuss
@24#, it is, in principle, possible to construct a potential d
termining the center of mass motion of a single compone
Generally, there will be two separate contributions to t
potential arising from~1! the ~repulsive! interaction of the
two components and~2! from the translational barrier create
by the discreteness@often referred to as the Peierls-Nabar
periodic potential~PNP!#. A sketch of the overall potential is
given in Fig. 3 ~compare with Fig. 2 of Ref.@24#!. It is
evident that the twisted mode exists due to the PNP as th
the source of the local minima observed in Fig. 3. Approa
ing the continuum limit, the PNP will vanish while the re
pulsive interaction persists and therefore the twisted m
will not survive in the continuum limit as the two compo
nents will be free to separate. The oscillation of the inter
mode of the twisted ILM can be viewed as a small amplitu
oscillation of a point particle in one of the local minima
the potential in Fig. 3. Therefore the frequency of the int
nal mode, as shown in Fig. 1, is a measure of the curva
of the potential at this local minimum. It is important to no
that although this ‘‘center of mass’’ picture offers insig
into the existence properties of the twisted ILM and its
ternal mode, it cannot fully account for the quantitative d
tails of the stability properties of the infinite-dimensional d
namical system. Hence, we use numerical linear stab
analysis to probe such details more carefully.

III. BIFURCATION SCENARIO

As the first harmonic (p51) of the S mode approache
the band and eventually hits it atC'0.146 04, an instability
emerges from a bifurcation of a quartet of modes that n
have a nonzero imaginary frequency componentv i . The po-
sitions of the eigenvalues in the spectral plane very clos
the onset of this instability are shown in Fig. 4. This behav
is rather unusual for the regular ST andP modes whose
bifurcations to instability occur primarily through the orig
onto the imaginary axis of the spectral plane. Herein,

FIG. 3. Sketch of effective potential between two opposit
phased components of the twisted mode.
03660
in
-
t.
s

is
-

e

l
e

-
re

-
-

y

w

to
r

e

complexity of a noncontinuum mode gives rise to the mu
more complex behavior of quartet generation in order to p
duce the instability. Furthermore, as was pointed out in R
@21#, the regular modes when approaching the phonon b
eventually merge with it without causing an instabilit
whereas clearly this is not the case here. It is also interes
to note that, given the structure of the discrete eigenva
problem v2v i5@H#v i ~where @H# is a Hermitian matrix!,
when linearizing around static nonuniform steady states
the discrete SG andf4 models, a quartet bifurcation is im
possible due to discreteness. Hence, this is a phenom
particular to the DNLS equation. This is a feature observ
for bright modes of the DNLS equation. Prior to this wor
such an oscillatory instability, reminiscent of a Hopf bifu
cation ~common to parabolic dissipative systems! had been
observed for bright modes in the Bragg-gap solitons of
generalized Thirring model@25#. In the DNLS equation, it
was very recently observed@26# that dark staggered mode
of the discrete problem become unstable via such an in
bility with increase of the coupling strength.

After splitting, the quartet of modes moves symmetrica
in the complex plane up to a maximum bifurcation and the
after moves towards the real axis. This scenario is very si
lar to the one described in Ref.@26#.

Due to the sparse population of the phonon band for
finite system~the trajectory of the imaginary part of which i
shown in Fig. 5 for a system withN5100 sites!, the eigen-
value may return to a gap in the spectrum. In that case
reenters the axis~in the case ofN5100 this happens forC
50.769); however, asC is increased, it encounters the clo
est eigenvalue of the band and collides with it. The collisi
results in the reexiting of the eigenvalue from the real a
~the ‘‘reentrant instabilities’’ of Ref.@26#! and a cascade o
such phenomena results~in analogy to Fig. 2 of Ref.@26#!.
Calculations with larger lattices have verified a picture sim
lar to Fig. 2 of@26# for the twisted modes. In the case of th

FIG. 4. The spectrum around the exact twisted mode at the o
of the first instability C50.146 04. Shown is the spectral plan
(v r ,v i). The quartet bifurcation is clearly visible. There are tw
more modes atv50 and a phonon band withvP6@1,114C#
3-3
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P. G. KEVREKIDIS, A. R. BISHOP, AND K. O” . RASMUSSEN PHYSICAL REVIEW E63 036603
infinite system ~for which the phonon band contains n
gaps!, the approach of the quartet eigenfrequency to the
axis is only asymptotic.

However, in the interval between the bifurcation from a
the return to the real axis of the quartet modes, there
further interesting phenomena. In particular, forC.0.41, a
mode that was sitting at the edge of the phonon band n
bifurcates along the real axis to become a localized eig
mode. This mode moves all the way to the origin of t
spectral plane to bifurcate along the imaginary axis of
plane giving rise to an additional unstable eigenmode. T
bifurcation occurs atC'0.714. Moreover, another eigen
mode emerges from the phonon band, forC.0.6 and moves
towards the origin reaching it forC'0.77. ~The behavior of
these two modes that are bifurcating from the band edg
shown in Fig. 6.! For higher values of the coupling constan
the twisted modes are highly unstable and hence of no
ticular interest.

IV. DISCRETE INTEGRABLE LIMIT

In the previous section we saw how the approach to
continuum limit of this discrete ILM occurs. Another inte
esting aspect worth exploring is the approach to thediscrete
integrable limit, as represented by the Ablowitz-Lad
~AL !NLS equation@27#

i u̇n52CD2un2uunu2~un111un21!. ~6!

In order to study how the twisted mode and its stabil
change on approaching the discrete integrable limit, we u
homotopic continuation, studying an interpolant between

FIG. 5. The dashed line shows the behavior of the~absolute
value of the! imaginary part of the quartet eigenvalue as a funct
of ~the absolute value of! its real part~i.e., showing its trajectory in
the spectral plane!. The excursion along the spectral plane entail
maximum bifurcation and an eventual return to the real axis foC
'0.769. The solid line indicates the~invariant! positionv r51 of
the edge of the phonon band. Note that the solid line is meant
as a guide to the eye as to where the phonon band edge lies~i.e., the
phonon band edge mode always hasv i50).
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two limits as the homotopic parametere is varied; a convex
combination of the DNLS and AL-NLS nonlinearities is a
follows:

i u̇n52CD2un2uunu2@2~12e!un1e~un111un21!#.
~7!

Clearly, thee50 limit ~from which we start the continua
tion! coincides with the DNLS equation, while thee51 limit
coincides with AL-NLS equation. In addition to studying th
twisted mode standing waves, we set up the analogs of
~3! and ~4! to study stability.

The homotopic continuation was performed for a typic
value of the coupling constant (C50.1) for which the mode
is stable in the DNLS equation~by using different values of
C, the generic nature of the scenario presented below
verified!. It is observed that the mode continues to be sta
until e'0.085. The scenario up to this point is strong
reminiscent of the one encountered approaching the c
tinuum limit. In particular the internal-mode frequency a
proaches the edge of the phonon band and eventually
lides with it, generating a quartet of eigenvalues. The qua
of modes then moves symmetrically in the complex pla
until e'0.235 where it eventually returns to the real lin
beyondthe phonon band. Note that this is the most import
difference between the continuum limit and the integra
limit approach. For the case of the continuum, as the valu
the lattice spacing is decreased, the width of the phonon b
gradually increases and eventually becomes semi-infinite
tending from a minimum frequency (v5L[1) to v5`.
On the contrary, this is not true for the discrete integra

a

ly

FIG. 6. The additional two eigenmodes that are bifurcating fr
the phonon band~shown by dash-dot lines! along the real line are
shown. The first eigenmode~solid line! bifurcates along the rea
line for C'0.410 and hits the origin to enter along the imagina
axis ~the stars indicate the magnitude of this, now imaginary, eig
value! for C.0.714. The second eigenmode~dotted line! bifurcates
for C.0.6 and arrives at the origin forC'0.77.
3-4
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limit where the width of the phonon band remains consta
allowing the stability of the twisted mode to be reestablish
This was also verified numerically by full-scale integrati
of the ILM initial condition for e.0.235. Ase is further
increased, ate'0.395 a pair of modes bifurcates off of th
lower edge of the phonon band, followed ate'0.465 by a
second pair. The eventual collision of one of these with
origin of the spectral plane results in the saddle-node bi
cation terminating this branch of twisted mode solutions
ecr'0.61. The spectral plane of the stability analysis arou
the ~still stable! mode ate50.6 is given in Fig. 7.

From the above, we conclude that the approach to
discrete integrable limit is in certain ways reminiscent of t
approach to the continuum limit; however, the specifics
the lattice system account for a~significant! difference that
permits the mode to exist and be stable even at relativ
high values of the relevant homotopic parameter.

FIG. 7. The eigenvalues at the spectral plane (v r ,v i) are shown
for the case approaching the integrable limit fore50.6, just prior to
the termination of the branch. One can clearly discern the mode
0 ~of multiplicity 2), the phonon band~dense group of circles!, the
two pairs of modes that have bifurcated off the lower edge of
band, as well as the mode withv56.367, which is the mode tha
has returned to the real line beyond the upper edge of the pho
band.
e

t.
,
v
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V. SUMMARY

Summarizing, we have seen that the twisted modes p
posed in@15# in media with cubic nonlinearity have ver
interesting properties.

~i! Contrary to the regular~ST and P) modes of the
DNLS equation, they can sustain exact breather on brea
solutions, which are genuinely quasiperiodic solutions of E
~1!. These modes are naturally conforming to the symmet
of the problem and, as suggested by Fig. 3~a! of @15# as well
as by our numerical results, are natural candidates for
long-time asymptotic states of the system. They are a
rather different from the single-humped, integrability-relat
~constructed via the Hirota method! and rather unstable~to
phase perturbations! quasiperiodic modes of the ALNLS
equation constructed in@28#.

~ii ! Contrary to the regular modes of the DNLS equati
and the discrete SG andf4 kinks @22,29,30#, the ‘‘collision’’
of discrete eigenmodes with the phonon band does not o
in a smooth way, but rather entails a quartet bifurcation fo
finite value of the coupling constant.

~iii ! Additional modes leave the phonon band to give r
to localized eigenmodes and to eventually produce insta
ties through the origin, the last of which will eventually d
stroy the mode for large values of the coupling constant.

~iv! The approach of the modes to the discrete integra
limit is in many respects reminiscent of that to the continuu
limit. However, the differences between the bandwidths
the phonon band in the two cases account for some diffe
phenomena and the stability of the mode even relativ
close to the integrable limit.

The fact that these twisted modes have a number of in
esting and significantly different properties than regu
DNLS modes warrants further efforts to better understa
their significance and influence in relevant experimental s
ations.
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